Archiv der Kategorie: Security

CAST-Workshop „Sichere Software entwickeln“ am 10. November

Auch in diesem Jahr organisieren wir einen CAST-Workshop zum Thema „Sichere Software entwickeln“. Der Workshop findet am Donnerstag, dem 10. November 2016 am Fraunhofer-SIT in Darmstadt statt. Am Vorabend laden wir zu einem Get-Together ein. Das Programm und alle weiteren Informationen zum Workshop findet Ihr hier: https://www.cast-forum.de/workshops/infos/227.

Classifying Vehicles

Security is a classification problem: Security mechanisms, or combinations of mechanisms, need to distinguish that which they should allow to happen from that which they should deny. Two aspects complicate this task. First, security mechanisms often only solve a proxy problem. Authentication mechanisms, for example, usually distinguish some form of token – passwords, keys, sensor input, etc. – rather than the actual actors. Second, adversaries attempt to shape their appearance to pass security mechanisms. To be effective, a security mechanism needs to cover these adaptations, at least the feasible ones.

An everyday problem illustrates this: closing roads for some vehicles but not for others. As a universal but costly solution one might install retractable bollards, issue means to operate them to the drivers of permitted vehicles, and prosecute abuse. This approach is very precise, because classification rests on an artificial feature designed solely for security purposes.

Simpler mechanisms can work sufficiently well if (a) intrinsic features of vehicles are correlated with the desired classification well enough, and (b) modification of these features is subject to constraints so that evading the classifier is infeasible within the adversary model.

Bus traps and sump busters classify vehicles by size, letting lorries and buses pass while stopping common passenger cars. The real intention is to classify vehicles by purpose and operator, but physical dimensions happen to constitute a sufficiently good approximation. Vehicle size correlates with purpose. The distribution of sizes is skewed; there are many more passenger cars than buses, so keeping even just most of them out does a lot. Vehicle dimensions do not change on the fly, and are interdependent with other features and requirements. Although a straightforward way exists to defeat a bus trap – get a car that can pass – this is too expensive for most potential adversaries and their possible gain from the attack.

The Key-Under-the-Doormat Analogy Has a Flaw

The crypto wars are back, and with them the analogy of putting keys under the doormat:

… you can’t build a backdoor into our digital devices that only good guys can use. Just like you can’t put a key under a doormat that only the FBI will ever find.

(Rainey Reitman: An Open Letter to President Obama: This is About Math, Not Politics)

This is only truthy. The problem of distinguishing desirable from undesirable interactions to permit the former and deny the latter lies indeed at the heart of any security problem. I have been arguing for years that security is a classification problem; any key management challenge reminds us of it. I have no doubt that designing a crypto backdoor only law enforcement can use only for legitimate purposes, or any sufficiently close approximation, is a problem we remain far from solving for the foreseeable future.

However, the key-under-the-doormat analogy misrepresents the consequences of not putting keys under the doormat, or at least does not properly explain them. Other than (idealized) crypto, our houses and apartments are not particularly secure to begin with. Even without finding a key under the doormat, SWAT teams and burglars alike can enter with moderate effort. This allows legitimate law enforecement to take place at the cost of a burglary (etc.) risk.

Cryptography can be different. Although real-world implementations often have just as many weaknesses as the physical security of our homes, cryptography can create situations where only a backdoor would allow access to plaintext. If all we have is a properly encrypted blob, there is little hope of finding out anything about its plaintext. This does not imply we must have provisions to avoid that situation no matter what the downsides are, but it does contain a valid problem statement: How should we regulate technology that has the potential to reliably deny law enforcement access to certain data?

The answer will probably remain the same, but acknowledging the problem makes it more powerful. The idea that crypto could not be negotiated about is fundamentalist and therefore wrong. Crypto must be negotiated about and all objective evidence speaks in favor of strong crypto.

Apple, the FBI, and the Omnipotence Paradox

“Can God create a rock so heavy He could not lift it?” this is one version of the omnipotence paradox. To make a long story short, ominpotence as a concept leads to similar logical problems as the naïve set-of-sets and sets-containing-themselves constructions in Russel’s paradox. Some use this paradox to question religion; others use it to question logic; and pondering such questions generally seems to belong to the realm of philosophy. But the ongoing new round of (civil) crypto wars is bringing a tranformed version of this paradox into everyone’s pocket.

Can Apple create an encryption mechanism so strong that even Apple cannot break it? Apple claims so, at least for the particular situation, in their defense against the FBI’s request for help with unlocking a dead terrorist’s iPhone: “As a result of these stronger protections that require data encryption, we are no longer able to use the data extraction process on an iPhone running iOS 8 or later.” Although some residual risk of unknown vulnerabilities remains, this claim seems believable as far as it concerns retroactive circumvention of security defenses. Just as a locksmith can make a lock that will be as hard to break for its maker as for any other locksmith, a gadgetsmith can make gadgets without known backdoors or weaknesses that this gadgetsmith might exploit. This is challenging, but possible.

However, the security of any encryption mechanism hinges on the integrity of key components, such as the encryption algorithm, its implementation, auxiliary functions like key generation and their implementation, and the execution environment of these functions. The maker of a gadget can always weaken it for future access.

Should Apple be allowed to make and sell devices with security mechanisms so strong that neither Apple nor anyone else can break or circumvent them in the course of legitimate investigations? This is the real question here, and a democratic state based on justice and integrity has established institutions and procedures to come to a decision and enforce it. As long as Apple does not rise above states and governments, they will have to comply with laws and regulations if they are not to become the VW of Silicon Valley.

Thus far we do not understand very well how to design systems that allow legitimate law enforcement access while also keeping data secure against illiegitimate access and abuse or excessive use of legitimate means. Perhaps in the end we will have to conclude that too much security would have to be sacrificed for guaranteed law enforcement access, as security experts warn almost in unison, or that a smartphone is too personal a mind extension for anyone to access it without its user’s permission. But this debate we must have: What should the FBI be allowed to access, what would be the design implications of guaranteed access requirements, and which side effects would we need to consider?

For all we know, security experts have a point warning about weakening what does already break more often than not. To expectat that companies could stand above the law because security, however, is just silly.

PS, remember Clarke’s first law: “When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.”

PPS: Last Week Tonight with John Oliver: Encryption

Eat Less Bread?

“Eat less bread” requests a British poster from WWI. We all know it makes sense, don’t we? Resources become scarce at wartime, so wasting them weakens one’s own position. Yet this kind of advice can be utterly useless: tell a hungry person to eat less bread and you will earn, at best, a blank stare. However reasonable your advice may seem to you and everyone else, a hungry person will be physically and mentally unable to comply.

“Do not call system()” or “Do not read uninitialized memory” request secure coding guides. Such advice is equally useless if directed at a person who lacks the cognitive ability to comply. Cognitive limitations do not mean a person is stupid. We all are limited in our respective ability to process information, and we are more similar to than dissimilar from each other in this regard.

Secure coding guidelines all too often dictate a large set of arbitrary dos and don’ts, but fail to take human factors into account. Do X! Don’t do Y, do Z instead! Each of these recommendations has a sound technical basis; code becomes more secure if everyone follows this advice. However, only some of these recommendations are realistic for programmers to follow. Their sheer number should raise our doubt and let us expect that only a subset will ever be adopted by a substantial number of programmers.

Some rules are better suited for adoptions than others. Programmers often acquire idioms and conventions they perceive as helpful. Using additional parentheses for clarity, for example, even though not strictly necessary, improves readability; and the const == var convention prevents certain defects that are easy to introduce and sometimes hard to debug.

Other rules seem, from a programmer’s point of view, just ridiculous. Why is there a system() function in the first place if programmers are not supposed to use it? And if developers should not read uninitialized memory, what would warn them about memory being not initialized? Such advice is inexpensive – and likely ineffective. If we want programmers to write secure code, we must offer them platforms that make secure programming easy and straightforward and insecure programming hard and difficult.

Security and protection systems guard persons and property against a broad range of hazards, including crime; fire and attendant risks, such as explosion; accidents; disasters; espionage; sabotage; subversion; civil disturbances; bombings (both actual and threatened); and, in some systems, attack by external enemies. Most security and protection systems emphasize certain hazards more than others. In a retail store, for example, the principal security concerns are shoplifting and employee dishonesty (e.g., pilferage, embezzlement, and fraud). A typical set of categories to be protected includes the personal safety of people in the organization, such as employees, customers, or residents; tangible property, such as the plant, equipment, finished products, cash, and securities; and intangible property, such as highly classified national security information or „proprietary“ information (e.g., trade secrets) of private organizations. An important distinction between a security and protection system and public services such as police and fire departments is that the former employs means that emphasize passive and preventive measures.

(Encyclopædia Britannica)

Öffentlicher Elektrowahllobbyismus

Ein Anbieter digitaler Wahltechnologie klärt uns darüber auf, wie unsicher herkömmliche Wahlen seien und welche Vorteile die maschinelle Abwicklung künftiger Wahlen hätte. Uns? Nun, genauer gesagt, die Leser von European View, dem Organ des Centre for European Studies. Das ist der Think Tank der Europäischen Volkspartei, der Euro-CDU/CSU.

Lest einfach mal den Artikel und streicht alle Stellen an, die Euch stutzig machen. Fertig? Dann findet Ihr hier und dort die Musterlösung.

Verbraucherschutz für #Neuland

Wieder einmal ist ein Programm damit aufgefallen, dass es dort, wo es installiert wird, die Umgebung vandalisiert. Kristian Köhntopp fasst das Problem anschaulich zusammen und die Kommentare unter seinem Post illustrieren, dass es sich nicht um einen Einzelfall handelt. Technisch kann man das Problem im Prinzip lösen, indem man einen vertrauenswürdigen Anbieter eine geschlossene Plattform betreiben lässt, die solche Programme verhindert beziehungsweise erkennt und ausschließt. Da stecken freilich einige Annahmen drin, die nicht unbedingt erfüllt sind.

Eigentlich handelt es sich jedoch um ein ökonomisches Problem, das nach einer ökonomischen Lösung schreit: “Moral hazard occurs under a type of information asymmetry where the risk-taking party to a transaction knows more about its intentions than the party paying the consequences of the risk. More broadly, moral hazard occurs when the party with more information about its actions or intentions has a tendency or incentive to behave inappropriately from the perspective of the party with less information.” — (Wikipedia: Moral Hazard)

Produkthaftung löst das Problem nicht unbedingt, sondern führt nur zur risikominimierenden Gestaltung von Firmengeflechten. Jedes Produkt bekommt eine eigene Wegwerffirma ohne nennenswertes Vermögen, die man im Krisenfall kostengünstig opfern kann. Dieses Modell ist auch im Security-Geschäft längst erprobt (Fallstudie: DigiNotar). Man müsste die Unternehmen zwingen, Rücklagen zu bilden und in einen Haftungsfond oder so etwas einzuzahlen. Kann man tun, passt aber besser zu Atomkraftwerken.

Zwangsweise hergestellte Transparenz bietet sich als Lösungsweg an. In #Altland haben wir dafür die Stiftung Warentest, aber die hat mit ihren Vergleichstests von Sonnencreme, Fahrradhelmen und Akkuscharubern schon genug zu tun. In #Neuland glaubte man früher, das Problem mit Positivzertifizierungen lösen zu können, die einem einzelnen Produkt definierte Sicherheitseigenschaften bescheinigen. Das funktioniert nur in Nischen gut. In jüngerer Zeit gesellen sich dazu allerlei Bug Bounties und Initiativen wie das Project Zero.

Wenn ich diese Ansätze frankensteine, komme ich auf eine unabhängige und solide finanzierte Europäische Stiftung IT-Sicherheit, die sich relevante Software näher anschaut und die Ergebnisse publiziert. Gegenstand ihrer Tätigkeit wären Consumer- und Massenprodukte, die sie auf Sicherheitsmängel und überraschende Funtionen prüft. Das Verschleiern von Funktionen müsste man vielleicht noch unter Strafe stellen, damit das funktioniert. Außerdem wird man sich überlegen müssen, wie die Tester ungehinderten Zugang zu SaaS bekommen. Das sind freilich Detailprobleme; erst einmal müssen wir grundsätzlich entscheiden, wie digitaler Verbraucherschutz jenseits von Seien Sie vorsichtig mit dem Internet aussehen soll.

(Geringfügig überarbeitete Fassung eines Posts auf Google+)

Sicherheit muss zweitrangig sein, sonst steht sie im Weg

Seit zwei Jahrzehnten träumt Deutschland erfolglos davon, die elektrische Regierung, staatsnahe Systeme wie die Gesundheitstelematik sowie das Internet überhaupt dadurch zu fördern, dass man generische Sicherheitsdienste amtlich entwickelt, standardisiert und reguliert. Sichtbare Zeichen dafür sind das Signaturgesetz, die Gesundheitskarte, DE-Mail sowie die eID-Funktion des Personalausweises.

Gut funktioniert hat das in keinem dieser Fälle. Die elektronische Signatur ist so wenig verbreitet, dass man ein darauf gestütztes Verfahren für den elektronischen Entgelt-Nachweis (ELENA) einstellen musste. Die Gesundheitskarte kann nach mehr als einer Dekade Entwicklungszeit – die Gründung der gematik liegt länger zurück als der erste Spatenstich für BER – kaum mehr als ihre Vorgängerin. De-Mail ist im Gegensatz zum Vorgänger eID noch nicht im Stadium der Ideenwettbewerbe angekommen, leidet jedoch unter vergleichbaren Akzeptanzproblemen.

Gemeinsam ist diesen Fällen der Versuch, eine generische Sicherheitstechnologie für eine Vielzahl noch unbekannter Anwendungen zu schaffen in der Annahme, diese Sicherheitstechnologie sei genau das, was den Anwendungen fehle. Beides ist falsch. Wer mit der Sicherheitstechnologie anfängt, macht den Entwurfsprozess kaputt und bekommt Design around Security statt Security by Design, und Anwendungen müssen zuerst funktioneren, bevor man beginnt, ihre Sicherheit zu optimieren. Sicherheit muss zweitrangig sein, sonst steht sie im Weg weiterlesen

OMG, public information found world-readable on mobile phones

In their Black Hat stage performance, employees of a security company showed how apps on certain mobile phones can access fingerprint data if the phone has a fingerprint sensor. The usual discussions ensued about rotating your fingerprints, biometrics being a bad idea, and biometric features being usernames rather than passwords. But was there a problem in the first place? Let’s start from scratch, slightly simplified:

  1. Authentication is about claims and the conditions under which one would believe certain claims.
  2. We need authentication when an adversary might profit from lying to us.
  3. Example: We’d need to authenticate banknotes (= pieces of printed paper issued by or on behalf of a particular entity, usually a national or central bank) because adversaries might profit from making us believe  a printed piece of paper is a banknote when it really isn’t.
  4. Authentication per se has nothing to do with confidentiality and secrets, as the banknotes example demonstrates. All features that we might use to authenticate a banknote are public.
  5. What really matters is effort to counterfeit. The harder a feature or set of features is to reproduce for an adversary, the stronger it authenticates whatever it belongs to.
  6. Secrets, such as passwords, are only surrogates for genuine authenticating features. They remain bound to an entity only for as long as any adversary remains uncertain about their choice from a vast space of possible values.
  7. Fingerprints are neither usernames nor passwords. They are (sets of) biometric features. Your fingerprints are as public as the features of a banknote.
  8. We authenticate others by sets of biometric features every day, recognizing colleagues, friends, neigbours, and spouses by their voices, faces, ways of moving, and so on.
  9. We use even weaker (= easier to counterfeit) features to authenticate, for example, police officers. If someone is wearing a police uniform and driving a car with blinkenlights on its roof, we’ll treat this person as a police officer.
  10. As a side condition for successful attack, the adversary must not only be able to counterfeit authenticating features, the adversary must also go through an actual authentication process.
  11. Stolen (or guessed) passwords are so easy to exploit on the Internet because the Internet does little to constrain their abuse.
  12. Attacks against geographically dispersed fingerprint sensors do not scale in the same way as Internet attacks.

Conclusion: Not every combination of patterns-we-saw-in-security-problems makes a security problem. We are leaving fingerprints on everything we touch, they never were and never will be confidential.

Confidentiality is overrated

Is security about keeping secrets? Not really, although it seems so at first glance. Perhaps this mismatch between perception and reality explains why threats are mounting in the news without much impact on our actual lives.

Confidentiality comes first in infosec’s C/I/A (confidentiality, integrity, availability) trinity. Secrets leaking in a data breach are the prototype of a severe security problem. Laypeople even use encryption and security synonymously. Now that the half-life of secrets is declining, are we becoming less and less secure?

Most real security problems are not about keeping secrets, they are about integrity of control. Think, for example, of the money in your wallet. What matters to you is control over this money, which should abide by certain rules. It’s your money, so you should remain in control of it until you voluntarily give up your control in a transaction. The possibility of someone else taking control of your money without your consent, through force or trickery, is something to worry about and, if such others exist, a real security problem. Keeping the contents of your wallet out of sight is in contrast only a minor concern. Someone peeking into your wallet without taking anything is not much of a threat. Your primary security objective is to remain in control of what is yours most of the times and to limit your losses across the exceptional cases when you are not.

This security objective remains just the same as you move on from a wallet to online banking. What matters most is who controls the balance in which way. In a nutshell, only you (or others with your consent), knowingly and voluntarily, should be able to withdraw money or transfer it from your account; you should not be able to increase your balance arbitrarily without handing in actual money; others should be able to transfer any amount to your account; exceptions apply if you don’t pay your debts.

Confidentiality is only an auxiliary objective. We need confidentiality due to vulnerabilities. Many security mechanisms rely on secrets, such as passwords or keys, to maintain integrity. This is one source of confidentiality requirements. Another is economics: Attackers will spend higher amounts on valuable targets, provided they can identify them. If there is a large number of possible targets but only a few are really valuable, one might try to make the valuable target look like all the others so that attackers have to spread at least part of their effort across many candidate targets. However, strong defenses are still needed in case attackers identify the valuable target in whichever way, random or systematic.

The better we maintain integrity of control, the more secure we are. Systems remain predictable and do what we want despite the presence of adversaries. Confidentiality is only a surrogate where we do not trust our defenses.

CfP: Workshop on Agile Secure Software Development @ ARES’15

We are organizing a workshop on agile secure software development in conjunction with the ARES’15 conference. Please find the full call for papers on the workshop website, http://www.ares-conference.eu/conference/workshops/assd-2015/. The conference takes place in Toulouse this year.

Important dates:

Submission Deadline: April 1522, 2015
Author Notification: May 11, 2015
Proceedings version: June 8, 2015
Conference: August 24-28, 2015

The Uncertainty Principle of New Technology

Security, privacy, and safety by design sounds like a good idea. Alas, it is not going to happen, at least not with innovative technology. Collingridge’s dilemma gets in the way: When a technology is new and therefore easy to shape, we do not understand its downsides – and the non-issues to be – well enough to make informed design decisions, and once we understand the problems, changing the now established and deployed technology fundamentally becomes hard. Expressed in terms of the Cognitive Dimensions framework, technology design combines premature commitment with high viscosity later on.

With digital technology evolving at high pace, we are continually facing Collingridge’s dilemma. Big data and Internet-scale machine learning, the Internet of everything, self-driving cars, and many inventions yet to come challenge us to keep things under control without knowing what to aim for. Any technology we never created before is subject to the dilemma.

A tempting but fallacious solution is the (strong) precautionary principle: to take all possible risks seriously and treat whatever we cannot rule out as a problem. This approach is fallacious because it ignores the cost of implementation. Every possible risk is not the same as every likely risk. Trying to prevent everything that might go wrong one will inevitably end up spending too much on some possible but unlikely problems. Besides, Collingridge’s dilemma may apply to the chosen treatments as well.

As an alternative we might try to design for corrigibility so that mistakes can be easily corrected once we learn about them. With respect to the information technology domain this idea seems to echo what David Parnas proposed in his seminal paper On the criteria to be used in decomposing systems into modules (DOI: 10.1145/361598.361623). Parnas argues in this paper that software modules should hide design decisions from their surroundings, so that the inner workings of a module can be modified without affecting dependent modules. Constructs supporting this found their way into modern-day programming paradigms and languages; object-oriented programming is the most abvious application of Parnas‘ idea.

But the dilemma is not that easily solved. First, software design is too narrow a scope. Technology is more than just software and can become quite viscous regardless of how easily the software is changed. Just think of the Internet and its core protocol, IP. Most operating systems come with support for IPv4 and IPv6 and there are many good reasons to move on to the new protocol version. Yet we are still waiting for the day when the Internet will abandon IPv4 in favor of IPv6. The Internet as a system is really hard to change. Nevertheless, modularity helps. When attacks against Internet banking users became widespread starting ca. 10 years ago, for example, banks in Germany managed to update their authorization mechanisms and increase security in relatively short time and with few troubles for their customers.

In their recent paper Cyber Security as Social Experiment (NSPW’14, DOI: 10.1145/2683467.2683469), Wolter Pieters, Dina Hadžiosmanović  and Francien Dechesne argue that experimentation could help us to learn more about the side effects of new technology. Since people are part of any interesting system, this amounts to running social experiments. If we do not care and just deploy a technology, this is an experiment as well, just less controlled and systematic. Particular to cyber security is the challenge of involving adversaries as they are the root of all security threats. The general challenge is to run social experiments responsibly within ethical bounds.

Even with experiments, some negative consequences will likely escape our attention. Some effects take too long before they show or show only after a technology has been deployed at a global scale. Could James Watt have thought of climate change due to the burning of fossil fuel? Probably not. But at least we understand what the meta-problem is.